ITC369 Computer Vision (8)

In this subject students learn computer vision technology in general and also focus on several specific algorithms. Students study the multiple view geometry in computer vision which includes topics on planar geometry, camera models, camera parameter estimations and epipolar and fundamental matrix. The students study the theory and practice of Recursive Bayesian estimation which includes topics on Kalman Filter and Particle Filter. The students also study other emerging topics in computer vision as computer vision is still an evolving technology.

Subject Outlines
Current CSU students can view Subject Outlines for recent sessions. Please note that Subject Outlines and assessment tasks are updated each session.

No offerings have been identified for this subject in 2018.

Where differences exist between the Handbook and the SAL, the SAL should be taken as containing the correct subject offering details.

Subject Information

Grading System



One session


School of Computing and Mathematics

Assumed Knowledge

Learning Outcomes

Upon successful completion of this subject, students should:

* be able to demonstrate understanding of multiple view geometry used in computer vision including topics on planar geometry, camera models, camera parameter estimations and epipolar geometry with fundamental matrix;

* be able to apply the theory of Recursive Bayesian estimation, including Kalman Filtering and Particle Filtering in image based tracking problems;

* be able to implement and analyse several algorithms using low-level computer vision library;

* be able to discuss and analyse several seminal algorithms in computer vision


This subject will cover the following topics:

Part 1: Multiple view geometry in computer vision:
* Planar geometry
* Camera models
* Camera parameter estimations
* Epipolar geometry and fundamental matrix

Part 2: Recursive Bayesian estimation:
* Probabilistic theories
* Kalman Filter
* Particle Filter


Current Students

For any enquiries about subject selection or course structure please contact Student Central or or phone on 1800 275 278.

Prospective Students

For further information about Charles Sturt University, or this course offering, please contact info.csu on 1800 275 278 (free call within Australia) or enquire online.

The information contained in the 2018 CSU Handbook was accurate at the date of publication: August 2018. The University reserves the right to vary the information at any time without notice.