Review of prospects for perennial wheat in Australia

Dr Lindsay Bell, CSIRO
Prof. Len Wade, Charles Sturt University
Prof. Mike Ewing, CRC Future Farm Industry
Some key messages

Perennial wheat could.....

- Benefit agricultural sustainability
- Reduce input costs & provide additional forage
- Benefit whole-farm management/risk/flexibility

Major challenges are...

- Domestication/breeding (universal)
- Tolerance of water deficit
- Tolerance of poor soils
- Risk of hosting foliar pathogens over summer

Sources of tolerance of abiotic & biotic stress in several exotic & native perennial Triticeae
Introduction

• Problems with agriculture based on annual crops
 • Soil erosion
 • Hydrological imbalance – salinity & nutrient leaching
 • Soil organic matter & fertility decline
 • Increasing inputs & input costs

• Perennial systems a more sustainable alternative
 • Mimic natural systems
 • But, need to be profitable

• Ongoing work on woody crops & perennial pastures

Is there an opportunity for perennial grain crops?
Microlaena stipoides – native perennial grain?

Study of *Microlaena stipoides* (Davies *et al.* 2005)

Favorable attributes

- Wide distribution
- Large seed size
- Seed yields $\approx 100-500$ kg/ha
- Year-round growth & high forage quality
- Tolerates drought, frost & acid soil

From Davies *et al.* (2005) Perennial Grain Crops for High Water Use - The case for *Microlaena stipoides*. RIRDC Report No 05/024
Which perennial crops in Australia

• Why focus on wheat?
 • Major grain produced in Aust.
 • Immediacy of market & adoption
 • Build on/interact with developments US & elsewhere

• Other immediate possibilities for Australia
 • Sorghum – sub-tropical regions
 • Rye/Triticale
 • Pulses – Chickpea, Soybean
THE BIG QUESTION

To justify effort to develop perennial wheat in Australia the question is:

Would perennial wheat play a potential role in Australian farming systems?

1. What are the potential benefits?
2. What are the probable challenges?
3. What characteristics would be necessary/desirable for adaptation in Australia?
4. How would perennial wheat fit into Australian farming systems?
Unique aspects of Australian agriculture

- Low production levels/yields
- Low external inputs
- Low & erratic rainfall
- Infertile soils
- Low levels of tariff or subsidy protection
- Dominance of mixed crop-livestock systems

Crop ‘ideotype’ will be different from US
Agro-climates of Australia’s cropping zone

Agro-climatic zones:
- Green: Temperate, cool season wet
- Brown: Dry Mediterranean
- Blue: Wet Mediterranean
- Yellow: Temperate, sub-humid
- Red: Sub-tropical, sub-humid
Potential benefits from perennial grains

1. Sustainability & environmental
 • Reduced erosion risk – greater year-round cover
 • *E.g.* Sediment loss < 10% under perennial grasses c.f. conventional crop systems (Silburn et al. 2007)
 • Increased soil carbon & associated soil ‘health’
 • Perennial grasses increase soil carbon (Dalal *et al.* 1995)
 • Improved hydrological balance & water use
 • *E.g.* Drainage halved under temperate perennial grasses (Ridley *et al.* 1997; Dolling 2001)
 • Reduced nitrate leaching and sub-soil acidification
 • *E.g.* N leaching 5-12 kg N/ha/yr lower under perennial grasses (Ridley *et al.* 2001)
Potential benefits from perennial grains

2. Direct production benefits
 • Reduced annual sowing costs
 • Fuel use, weed control
 • Improved nutrient-use-efficiency (Crews 2005)
 • Internal N recycling
 • Reduced losses (leaching/volatilisation)
 • Synchrony of supply
 • Weed management
 • Competition reduce seed set or germination
 • Tactical responses e.g. grazing/cutting
 • Provide forage for livestock
 • Regrowth after harvest
 • Earlier start to growth in autumn
Potential benefits from perennial grains

3. Whole-farm management

• Labour
• Capital investment
• Enterprise flexibility – grain-grazing
• Risk – climate & financial
Challenges – Anti-agronomic traits

Agronomic problems introduced from perennial parents

- Low spikelet fertility
- Self-incompatibility
- Shattering
- Indeterminate ripening
- Awn robustness
- Seed dormancy

- Smaller seed size
 -↓ flour yields
 -↑ bran per kernel,
 -↑ fibre
- Proportional to genome allocation from parents
- Grain chemistry?
 -Unknown in perennial Triticeae
 -E.g. Th. intermedium has no gluten, but higher % protein than wheat (Becker et al. 1992)
 -Novel proteins? (Payne et al. 1984)
Challenges – Grain yield

Grain yield of perennials < annuals

Trade-off between yield & longevity?

• Competition for resources

• Seed vs. Perenniating structures
 • Defence mechanisms
 • Stress tolerance

Alternative arguments (DeHaan et al. 2005)

• Grain yield a result of natural selection
 • Perennials dominate in resource-limited environments
 • Survivorship > fecundity

• Grain yield is often SINK-limited → unused resources

• ‘Energetic cost of perenniation’ ≤ extra growth capacity
The breeding challenge

Strategy 1. Perennializing annual wheat

• Perenniality is not a single gene trait
• Need majority of perennial parent genome to be ‘perennial’
• Problems with sterility, chromosomal/genetic stability

Strategy 2. Improve wild perennial

• Use wheat as a donor parent for desired agronomic traits
• Knowledge of ‘genes of interest’ is greater
• Many annual crops have perennial progenitors
 • e.g. Soybean, Sunflower, Rice etc.

• Domestication of annual crops
 • Wild annuals are colonizing species - adapted to disturbance & resource-rich environments
 • ‘our ancestors took the easy route’ (Wagoner 1990)

• Can we ‘re-domesticate’ perennials?
 • Alter our selection pressure
 • Improved ‘selection’ techniques & genetic knowledge
Probable challenges – Pests & diseases

• Longer growing-season – build-up of pathogens
 → ‘green bridge’ over summer
 • Innoculum source for following season
 • Major problems with diseases requiring living tissue
 Rusts – leaf, stripe and stem; Viruses – WSMV, BYDV
• Capacity to manage diseases reduced
 • Tillage & crop rotation reduced
 • Soil & residue pathogens build up
 • Proliferate diseases of continuous, no-till wheat e.g. crown rot

RESPONSE - Breed for genetic resistance
• Many perennial sources of foliar disease resistance
• Less info. on root diseases
Sources of biotic tolerances in perennial Triteceae

- denotes where tolerance has been documented

<table>
<thead>
<tr>
<th>Species</th>
<th>BYDV</th>
<th>WSMV</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Stripe rust</th>
<th>Tan spot</th>
<th>Fusarium head blight (scab)</th>
<th>Powdery mildew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th. elongatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. bessarabicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. junceiforme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. distichum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. scirpeum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. junceum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. intermedium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. ponticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. angustus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. arenarius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. triticoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. racemosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. montanum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tolerance of Australia’s environment

• Require different adaptations from US
 • E.g. Cold/freezing tolerance

• We need
 • Tolerance of water deficit
 • Tolerance of poor & infertile soils
 • Different phenology

• Improved tolerance from perennial parents
 • Occupy niches where annual wheat performance reduced

• Several native & naturalised perennial Triticeae
 • Native – *Elymus* & *Australopyrum*
 • Exotic – *Thinopyrum*, *Leymus*, *Elytrigia*

→ Useful sources for adapted germplasm?
Distribution of perennial Triticeae in Australia

A. Native *Elymus* spp.
Distribution of perennial Triticeae in Australia

B. Introduced *Thinopyrum* spp.

Legend
- Thinopyrum distichum
- Thinopyrum elongatum
- Thinopyrum junceiforme
- Thinopyrum ponticum
Distribution of perennial Triticeae in Australia

C. Native *Australopyrum* and introduced *Leymus/Elytrigia* spp.

Legend:
- △ *Elytrigia repens*
- ◆ *Australopyrum pectinatum*
- ○ *Australopyrum velutinum*
- ■ *Leymus arenarius*
- □ *Leymus multicaulis*
Adaptation to water deficit

Affect potential distribution of perennial wheat

- Desirable attributes for adaptation to arid environments
 - Phenology
 - Summer dormancy
 - Eg. Temperate perennial grasses
 - Deep-rootedness
 - Tolerance traits e.g. osmotic adjustment, …

- Temperate perennial grasses indication of distribution and desirable traits
Water deficit in Australia’s cropping zone

Map showing different agro-climatic zones in Australia, indicating water deficit areas.
Tolerance of soil constraints

Stress tolerance perennials > annual wheat

- Soil acidity & Al/Mn toxicity
- Salinity tolerance
- Waterlogging tolerance

• Longer-lived, larger root system
 • Access deeper soil layers
 • Penetrate hard pans, high soil strength
 • Extract reserves of nutrients
Sources of abiotic tolerances in perennial Triticeae

- denotes where tolerance has been documented

<table>
<thead>
<tr>
<th>Species</th>
<th>Drought</th>
<th>Al toxicity</th>
<th>Mn/B/Cu toxicity</th>
<th>Salinity</th>
<th>Water-logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th. elongatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. bessarabicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. junceiforme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. distichum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. scirpeum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. junceum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. intermedium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th. ponticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. angustus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. arenarius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. triticoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. racemosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. montanum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other perennial cereal alternatives

• Triticale/Rye – *Secale montanum*
 • Drought
 • Heat
 • Soil acidity

• Warm-season cereals – sorghum, pearl millet
 • Subtropical environments

• *Distichlis palmeri*
 • Salt-affected land
Affected greatly by longevity

- Phase rotations – 2-4 year rotations
 - E.g. lucerne
 - Self-regulates by climatic capacity
- Variation on conventional systems
 - Unreliable year-to-year persistence
 - Opportunistically utilise out-of-season rain
- Perennial polyculture - permanent
 - Mixture of warm-, cool-season grasses, legumes
 - Complement spatially, seasonally, or in nutrients
- Companion or relay cropping
 - Increase productivity of low densities
 - Provide N inputs (clover or medic)
Phase rotation with lucerne

Year 1 - Pasture establishment under cover crop

Year 2 - Pasture begins to create a dry soil buffer

Year 3 - Pasture creates large soil buffer

Year 4 - Pasture removal followed by crop

Year 5 - Continue crop rotation

Year 6 - Re-establish pasture under cover crop
Farming systems for perennial wheat

Affected greatly by longevity

• Phase rotations – 2-4 year rotations
 • E.g. lucerne
 • Self-regulates by climatic capacity

• Variation on conventional systems
 • Unreliable year-to-year persistence
 • Opportunistically utilise out-of-season rain

• Perennial polyculture - permanent
 • Mixture of warm-, cool-season grasses, legumes
 • Complement spatially, seasonally, or in nutrients

• Companion or relay cropping
 • Increase productivity of low densities
 • Provide N inputs (clover or medic)
Taking perennial wheat forward in Australia

• Potentially a radical change for Australian agriculture
 • Benefits to sustainability & flexibility
 • While maintain grain production

• Key issues for investment cost-benefit payoff
 • Geographical scope
 • Size of applicable area
 • Quantify potential benefits
 • Likely timeline/cost for development
Benefit/Cost Ratio – scale of adoption

Assuming development needed –

- 18 years of development (ie. AU$ 9.8 M)
- 50% likelihood of success

<table>
<thead>
<tr>
<th>Max. level of adoption (% of farmers)</th>
<th>% of winter crop area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>80</td>
<td>29</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
</tbody>
</table>
Assuming peak adoption 600 000 ha –

- 60% max adoption rate
- 20% farm area across 25% of Aust winter-crop area.

<table>
<thead>
<tr>
<th>Total years (scoping + breeding)</th>
<th>Research costs (^A) (AU$ M)</th>
<th>Likelihood of success</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>75%</td>
</tr>
<tr>
<td>3 + 10</td>
<td>7.4</td>
<td>28</td>
</tr>
<tr>
<td>3 + 15</td>
<td>9.8</td>
<td>16</td>
</tr>
<tr>
<td>3 + 20</td>
<td>11.7</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^A\) Discounted at 5%
Taking perennial wheat forward in Australia

Verifying the concept

• Evaluate existing germplasm
 • Growth
 • phenology & agronomic suitability
• Pseudo-perennial wheat systems
 • e.g. temp. perennial grasses
 • Desirable adaptive traits (e.g. summer dormancy)
 • Productivity benchmarks
• Role for simulation modelling
 • Climate-yield variation,
 • Adaptation or relative advantage in particular situations
 • Quantify environmental effects
 • Identify important agronomic & physiological traits
Interim products

• Dual-purpose perennial wheat
 • Grazing & opportunistic grain
 • Grazing offsets lower grain yield/poorer quality
 • Modest development to perennial forage grass

• As grain quality & yield increases, imperative for forage reduced
Conclusion

Are ‘perennial grains’ the next revolution in agriculture?

• Undoubtedly there are a range of challenges; and
• A large coordinated effort is required into the future
• Promising progress has been made, albeit slow
• Significant sustainability benefits are possible
• There is excitement about the prospect

