Quantitative Analysis of Cooked Rice Grain Texture

Yanco Rice Quality Team

Presented by
Dr Jixun Luo

19th Jul 2017
Introduction

Rice varieties with different quality and texture are used to make different types of foods.
Introduction

Factors affecting cooked rice texture
- Amylose content
- Post-harvest processing
- Cooking methods
 - South and East Asians: rice cooker, particular water ratio
 - Indians: boiling in excess water
 - Americans: use large amount of water then drained

Current methods (*indirectly measures texture*)
- RVA (setback correlated with firmness)
- Gel texture analysis (gel firmness)
Introduction

Texture analysis

• Sensory panel
 High cost for training and maintaining the panel
 Not ideal for screening purpose

• Instrumental approach
 Less cost and less time-consuming
 • Texture analyser
 Mimic the first bite of a food sample

probe → Rice → Scale

Firmness Stickiness
Aims of study

• Develop a method to directly measure cooked rice texture
• Compare textures of breeding lines and existing varieties
• Determine the contribution of different grain quality factors affecting the texture (amylose content, gelatinisation temp, RVA parameters, etc.)
Materials

30 varieties from Leeton farm, C2016
Selected based on
- Different grain dimensions
- Apparent amylose content 7~27 %
- Gelatinisation temp (GT) 65~79 °C
- Optimum cooking time 14~21 min
Method

Cooking method

- Excess water method with
 - Standard cooking time
 - Standard water ratio

Instrumental texture analysis

- Excess water drained after cooking
- Single layer cooked rice grains
- Two cycle compression
Method

Cooking in RVA

- 1g white rice contained in tea ball mesh and rinsed with tap water
- Add water up to 4g in a RVA can
- Seal the can with lid on using the thermo tape
- Load on to RVA machine
- Run the standard cooking profile

95°C, 21min

- Remove the lid after cooking to release the steam
- Replace with another lid at 1 min to keep it warm for 3 min on the bench
Texture Profile Analysis (TPA) using TXT

- Weigh and prepare 1g cooked rice sample within the mark on a glass plate in 1 min
- Run the standard test profile
 Two cycle compression, compress to 80% sample height

Technical tips:
Each single grain sits on its side and spread well. Sample height is negatively correlated with firmness for the same sample.
Results - theory

Texture Profile

(Firmness) Peak force

(Ration of Area 3 and 4 is cohesiveness)

Area 3 (Stickiness)

Area 4

Cycle 1

Cycle 2
Results - Firmness

Firmness (g)

- Control
- Amylose

- 7%~9%
- 17%~21%
- 25%~27%

Different letters indicate significant differences (p < 0.05)
Results - Firmness

<table>
<thead>
<tr>
<th>Amylose content</th>
<th>7%~9%</th>
<th>17%~21%</th>
<th>25%~27%</th>
</tr>
</thead>
</table>

![Graph showing firmness and gelatinization temperature for various rice varieties.](image)
Results - Firmness

\[y = 77.459x + 2027 \]
\[R^2 = 0.7664 \]

\[y = 3.2828x + 3020.5 \]
\[R^2 = 0.4789 \]
Results - Stickiness

- Calmochi101: 7%~9%
- TDK11: 17%~21%
- HomMaliNaw: 25%~27%
- Tarra140: control
Results - Stickiness

![Graph showing stickiness and gelatinization temperature for various rice varieties.](https://example.com/graph.png)

- **Amylose content**
 - 7%~9%
 - 17%~21%
 - 25%~27%

- **Varieties**
 - TDK11
 - HMN
 - Calmochi101
 - TDK11
 - Reiziq
 - YRM69
 - Koshi
 - Nipponbare
 - IRAT109
 - Doongara
 - IR64
 - L205
 - Fin
 - SHZ2
 - BD192
 - Calmochi 201
 - Fin
 - Amber33
 - Doongara
 - SHZ2
 - BD192
 - L205
Results - Stickiness

\[y = -0.0505x + 274.95 \]
\[R^2 = 0.4697 \]
Results - Stickiness

For OCT (°C), the relationship between stickiness and OCT is given by:

\[y = 13.949x - 171.71 \]

with an \(R^2 = 0.5255 \) for None Waxy samples.

For Setback (RVAU), the relationship between stickiness and setback is given by:

\[y = -13.129x + 1146.2 \]

with an \(R^2 = 0.7708 \) for the same samples.
Summary

• Used TVT machine to measure texture directly
• Compared results to gel firmness
• Explored texture correlation with OCT, GT, RVA setback parameter
• The outlier varieties in the texture profile of each amylose group were found
Future work

• More quality data for covariant analysis
• Amylose & amylopectin structure analysis by CE/SEC
• Look at the outliers
Acknowledgement

Rice Quality Team:
- Dr Rachelle Ward
- Ms Margrit Martin
- Ms Leanne Johnston
- Ms Kylie Elliott
- Ms Rachael Wood (PhD candidate)

Rice Breeding Team:
- Dr Peter Snell
- Dr Ben Ovenden

Supervisor:
- Dr Sandra McDougall