Are deficiencies in calcium and magnesium implicated in lamb mortalities in sheep flocks in Australia?

Shawn McGrath,
Fred Morley Centre, CSU

shmcgrath@csu.edu.au
@FMCentre

Three Components:

1. Field trials in 2016
2. Literature Review
3. Replicated experiments 2017
2016 data collection (courtesy David Masters)

- 16 farms – NSW, SA, WA, Vic
- Ewes – preferable carrying twins
- Blood and urine samples before and after lambing
- Forage and soil sampling
- Lamb survival
Calcium in forage – pre-lambing

Higher is better

Requirement

Magnesium in forage - pre-lambing
Sodium in forage - prelambing

Lower is better

Requirement

Potassium in forage - prelambing

Higher is better
Calcium in urine prelambing and lamb survival

\[y = 0.12x + 0.68 \]
\[R^2 = 0.26 \]
\[P \approx 0.06 \]

Urine pH prelambing and lamb survival

\[y = -0.13x + 1.8 \]
\[R^2 = 0.24 \]
\[P \approx 0.06 \]

Magnesium in urine prelambing and lamb survival

\[y = 0.01x + 0.66 \]
\[R^2 = 0.46 \]
\[P < 0.05 \]
Conclusions - 2016

• Forage:
 – Ca, Mg, Na and K balance better than crops
 – Not convincing evidence that ewes are at risk

• Metabolites:
 – Alkaline urine
 – Ca status as indicated by plasma, urine and FE lower than expected from forage results
 – Mg status normal

• Lamb survival:
 – Higher survival related to higher Ca and Mg in urine, lower urine pH (P ~0.05 – 0.06)
 (urinary levels – indicator of Ca and Mg status)
Can we make a case for ewe Ca and Mg status impacting lamb survival?

• A relationship **BUT** lots of confounding factors in 2016
 – including breed, proportion of singles, time of lambing, pasture type, FOO ...

• Sub-clinical impacts (in addition to milk fever and grass tetany)

• But some evidence from the literature – sheep and other species ...
Low magnesium and lamb survival – possible mechanisms

- Decreased ability to meet metabolic demands of increased heat production
- Decreased weaning weight
- Ketosis (Pregnancy toxaemia)
- Lactation Failure
- Effect maternal behaviour? E.g. ewe-lamb bond
- Increased susceptibility to stress (ewe)
- Poor glycaemic control/insulin resistance
- Reduces PTH secretion and tissue responsiveness to PTH (Ca regulation)
- Mg also affects calcium homeostasis
- Clinical hypomag/Grass tetany
- Hypothermia/exposure
- Ewe death or inability to tend to lamb(s)
- Low Mg & Low Ca
- Reduce core body temp and thermogenesis (offspring)
What if we supplement with Mg?

- Neuroprotectant
 - Slow neuronal damage during hypoxia
- Magnesium supplement
 - Improved immunity in offspring
 - Increase IgA levels in colostrum and milk
 - Anti-stress effects
 - Improved maternal behaviour post-lambing
Low calcium and lamb survival – possible mechanisms

- Reduced rumen/abomasal activity
- Cervical dilation issues
- Retained placenta
- Uterine inertia
- Nerve stimuli and muscle weakness
- Clinical hypocalcaemia
- Risk of infection
- Maternal behaviour
- In utero death
- Prolonged labour

Compromised immune function in lambs
Ewe death; maternal behaviour
Overall conclusions

- Possible link between low ewe calcium and magnesium status and lamb survival in 2016 on-farm surveys
- Literature describes possible mechanisms by which this may occur
- Replicated experiments (+/- supplement) on 5 farms in 2017:
 - WA, SA, NSW
 - Mg$_2$SO$_4$, CaCl$_2$ and salt

Results by end of the year.
AWI-sponsored project

- Principal Investigator: Michael Friend

Co-investigators:
- **David Masters (UWA)**
- Susan Robertson, Marie Bhanugopan (CSU)
- Gordon Refshauge (NSW DPI)
- Serina Hancock, Andrew Thompson (Murdoch Uni)
- Janelle Hocking-Edwards, Emma Winslow (SARDI)

- Additional contributors to literature review:
 Kate Louden, Peter McGilchrist and David Miller (Murdoch Uni)
An alliance between Charles Sturt University and NSW Department of Primary Industries

www.grahamcentre.net
Sodium content in lucerne pastures in southern NSW, sampled from 76 farms (Hall, 1982)

67% of samples are below 0.6 g/kg DM (0.06% DM)
Low calcium and lamb survival – possible mechanisms

- Reduced smooth muscle activity
- Nerve stimuli and muscle weakness
- Retained placenta
- In utero death
- Prolonged labour
- Uterine inertia
- GIT = Loss of appetite
- Cervical dilation issues
- Ewe unable to rise
- Risk of infection
- Compromise future reproduction
- Compromised immune function in lambs
- Maternal behaviour
- Ewe death; maternal behaviour
- Preg tox; Lower birth weight; reduced milk production
- Clinical hypocalcaemia
- Reduced muscle activity
- Immune cell function