BMS346 Genomics, Proteomics & Bioinformatics (8)

Genomics, proteomics and bioinformatics are the cornerstones of the so-called 'Omics technologies that are routinely applied in medical research and throughout the drug-development process. In recent years genomic and proteomic technologies, combined with bioinformatics, and rapid progress in high throughput technologies, have made it possible to study gene regulation and protein function in high throughput. In contrast to studies of single genes or single proteins, genomic and proteomic methods simultaneously investigate large numbers of genes or proteins in one single experiment. This capstone subject will focus on the historical development of these technologies to provide a platform from which the key applications, techniques and recent advances in these fields can be appreciated.

Subject availability
Session 2 (60)
Wagga Wagga Campus
Continuing students should consult the SAL for current offering details. Where differences exist between the Handbook and the SAL, the SAL should be taken as containing the correct subject offering details.
Subject Information
Grading System
One session
School of Biomedical Sciences
Assumed Knowledge

Second year undergraduate biochemistry (particularly protein biochemistry), genetics, biotechnology and molecular cell biology.

Learning Outcomes
Upon successful completion of this subject, students should:
  • be able to describe the development of Omics technologies, with emphasis on genomics and proteomics;
  • Be able to synthesise information to discuss the key technological developments that enabled modern genomic and proteomic studies;
  • be able to describe advanced genomics and proteomics technologies and the ways in which their data are stored;
  • be able to use bioinformatics techniques to query examples of genomic and proteomic databases to analyse cell biology;
  • be able to describe the different types of genome variation and their relationship to human diseases;
  • be able to discuss how biological systems information relating to genes, proteins and cellular structures can be used to model living cells, and even to create new synthetic cells.
The subject will cover the following topics:
  • A historical perspective on the development of omics technologies
  • Genomics: an introduction to genomics, databases and sequence comparison techniques, genes and the genome, principles and applications of DNA microarray technology, transcriptional profiling, micro-array applications, SNP, QTL and genotyping, modern genome sequencing, genome variation and phylogeny, biomes, and transcriptomics.
  • Proteomics: early origins of proteomics, gel-based proteome profiling, the rise of different mass spectrometry methods, modern high throughput mass spectrometry, protein data bases
  • Bioinformatics: mining data bases for genetic, transcriptional and protein-based information, including an introduction to web based tools such as NCBI and UNIPROT.
  • Systems biology: integrated biological analysis involving multiple omics inputs and bioinformatic processes to predictively model biological systems in silico
Current Students

For any enquiries about subject selection or course structure you will need to contact your Course Director. You can find the name and contact details for your Course Director in your offer letter or contact your School office.

Prospective Students

For further information about Charles Sturt University, or this course offering, please contact info.csu on 1800 334 733 (free call within Australia) or enquire online.

The information contained in the 2017 CSU Handbook was accurate at the date of publication: June 2018. The University reserves the right to vary the information at any time without notice.